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On Equality and Inequality in Stationary Populations 

 

Abstract. Although it is an analytic construct important in its own right, a stationary population 

is an integral component of a life table. Using this perspective, we discuss well-known and not-

so-well known equalities that are found a stationary population as well as a set of inequalities. 

There are two parts to the set of inequalities we discuss. The first (theorem 1) is that at any 

given age x, the sum of mean years lived and mean years remaining exceeds life expectancy at 

birth when x is greater than zero and less than the maximum lifespan (When x = zero or x 

=maximum lifespan, then the sum of mean years lived and mean years remaining is equal to 

life expectancy at birth). The second inequality (theorem 2) is a generalization of the first, 

namely that for the entire population, the sum of mean years lived and mean years remaining 

exceeds life expectancy at birth.  We provide illustrations of the two inequalities, discuss them 

as well as selected equalities and relationships. 
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On Equality and Inequality in Stationary Populations 

1. INTRODUCTION 

Although many of them are apparent and some that are not so apparent have been 

described, equalities represent a defining characteristic of stationary populations (Kintner 

2004). In addition to the obvious equalities such as the crude birth rate and crude death rate, 

research has revealed that: (1) mean years lived is equal to mean years remaining; and (2) the 

distribution of age composition is equal to the distribution of remaining lifetimes(Carey et al. 

2008; Rao and Carey 2014, Vaupel 2009). To these equalities, the following can be added: (1) 

mean age is equal to mean years lived (Rao and Carey 2014); and (2) mean age is equal to 

mean years remaining (Kim and Aron 1989).   

As we show in this paper, mean age can be expressed as a function of total years lived by 

the stationary population and its life expectancy at birth, which implies that for a given 

stationary population, its mean age can be expressed as a function of its crude birth rate as 

well as its crude death rate. In turn, because mean age is equivalent to mean years lived and 

mean years remaining, it also can be expressed as a function of total years lived and, 

respectively, life expectancy at birth, the crude birth rate and the crude death rate.  

To these equalities, we add a set of inequalities by demonstrating: (1) that at any given age 

x, the sum of mean years lived and mean years remaining exceeds life expectancy at birth in a 

given stationary population, where 0 < x < ω (maximum lifespan); and (2) that for a 

stationary population as a whole, the sum of mean years lived and mean years remaining 

exceeds life expectancy at birth. We discuss this set of inequalities and provide an empirical 

illustration of them.  

Before proceeding, it is worth noting that while a stationary population is an analytic 

construct in its own part, it is an integral component of a life table [1]. As such, the equalities 

and inequalities we identify and discuss apply to life tables and their construction. As our 

main findings, we offer:  (1) theorem 1 and provide a proof for it that shows that for a given 
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age x, the sum of mean years lived (λx) and mean years remaining (ex ) exceeds life 

expectancy at birth where 0 < x < ω;  (2) theorem 2 as a generalization of  theorem 1 to all 

ages and provide a proof for it; and (3)   an equality we found embedded in theorem 1, 

namely that when age = 0 or when age = ω, then λx +ex = e0. 

1.1 Equalities in a Stationary Population 

Let the size of a stationary population be To 

where  

T0 = ke0 

and 

k = radix of the life table (i.e., k = 100,000) = l0 

e0= life expectancy at birth (Mean years remaining at birth) 

Extending the notation used by Vaupel (2009), the age distribution of a stationary 

population of size To can be described by: (1) the probability density function c(a), the 

distribution of years lived, which is equal to the probability density function λ(a); and (2) the 

distribution of years remaining, which is described by the probability density function r(a). 

Using this notation, we can define the total number of years lived by individuals currently 

alive in the stationary population (Τλ) and the total number of years remaining to them (Τr), 

respectively, as: 

(1) Tλ =    ∫       
 

 
 = T0μλ   

(2) Τr =   ∫       
 

 
    =   T0μr  

 

Because, as we noted earlier, c(α) = λ(α ),  

              then          Tc =∫       
 

 
  = Τλ =  ∫       

 

 
  

 

Kim and Aron (1989) provide a proof that mean age in a stationary population is equal to 

mean expected years remaining. Because Vaupel (2009) demonstrated that that the mean 

number of years lived in a stationary population is equal to the mean expected years 

remaining, we can see that the three means are equivalent, using the notation just described: 
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(3) μc = μr = μλ 

where   

μc = mean age = ∫       
 

 
    

μr = mean years remaining =  ∫       
 

 
    

and  

μλ = mean years lived =   ∫       
 

 
    

Because T0 = ke0, then it follows that  

(4) Tc/T0 = μc 

Because μc = μr = μλ, then it follows that 

(5)  Tc/T0 = μr = μλ 

And because T0 = ke0, μc can be expressed as 

(6) μc = Tc/ke0 

then it follows that 

(7) Tc = μcke0 

and 

(8) Tc/k = μce0 

In verbal terms, equation (8) states that when divided by the radix of the life table, k, the 

total number of years lived by those alive in the stationary population, Tc, is equal to the 

product of the mean age of the stationary population, μc, and its life expectancy at birth, e0. 

When divided by the radix of the life table, the total number of years lived by those alive in 

the stationary population also is equal to: (1) the product of the mean number of years lived 

by those alive in the stationary population, μλ, and life expectancy at birth, e0; and (2) the 

product of the mean number of years remaining to those alive in the stationary population, 

μr, and life expectancy at birth, e0.   

Further, 

(9) e0 = Tc/kμc 

and because 1/e0 = b = d 
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where  

b = the crude birth rate in the stationary population (k/T0) 

 d = the crude death rate in the stationary population (k/ T0) 

then it follows that the relationship, μc = Tc/ke0 can be expressed as  

(10) μc = (Tcb)/k 

In verbal terms, equation (9) states that when divided by the radix of the life table, k, the 

product of the total number of years lived by those alive in the stationary population, Tc, and 

the population’s crude birth rate, b, is equal to the mean age of the individuals currently alive 

in the stationary population.  This equality is the product of the force of fertility and the total 

years lived by those alive.  Because b = d, the equality can also be viewed as the product of 

the force of mortality and the total years lived by those alive. These equalities should not be 

surprising because for a population to be stationary, the force of increments is equal to the 

force of decrements. Similarly, it should not be surprising that specific values of mean years 

lived, μλ, and mean years remaining, μr , also result from the specific equality of the force of 

increments and the force of decrements acting in concert with the total years lived in a given 

stationary population. 

1.2 A Set of Inequalities 

Theorem 1 

when 0 < x < ω, then  λx + ex > e0 

Definition 

λx = (T0 -Tx)/l0 = mean years lived to age x 

and 

ex = Tx/lx  = mean years remaining at age x 

Corollary 

when x =0 then λx + ex = e0 since 

(T0 -T0)/l0  + T0/l0  = 0 + e0 = e0 

and when x = ω then λx + ex = e0 since 



 

 7 

(T0  -Tω)/l0  + Tx/lx  =    (T0 -Tω)/l0 + Tω/lω = (T0 - 0)/l0 + 0 = e0 + 0 = e0 

Proof 

Let λx = (T0 - Tx)/l0 = (e0l0 - Tx)/l0 = e0 - Tx/l0 

then λx + ex = e0 - Tx/l0 + Tx/lx 

    and except when x= 0, so that Tx/l0  = T0/l0  = e0 

    and when Tx/lx = T0/l0 so that e0 - T0/l0 + T0/l0 = 0 + e0  = e0 

    and except when x = ω, so that  Tx/l0 = Tω/l0  

    and when Tx/lx = Tω/lω, so that e0 - Tω /l0 + Tω/lω = e0 - 0/l0 + 0/0 = e0 - 0 + 0 = e0 

then Tx/l0 < Tx/lx because l0 >lx when x >0 

Thus, λx +ex > e0   because 

e0 - Tx/l0 +Tx/lx >e0 

Theorem 2   

μλ + μr > e0 

Proof 

Pressat (1972: 479-480) examined the relationship between mean age of a stationary 

population and life expectancy at birth and found (in the notation we use): 

(11) μc =  ½(e0  +( σ 2/e0)) 

 where  

  μc  = mean age of the stationary population  

  e0= life expectancy at birth 

  and 

  σ 2 
 = variance in age at death 

Pressat’s identification of equation (11) was independently re-discovered by Morales 

(1989) and identified as a re-discovery by Preston (1991).  

Equation (11) is particularly useful here because it provides a straightforward basis for  

proving the inequality given in theorem 2, namely that μλ + μr > e0. First, recall that as 
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shown earlier, the mean age of the stationary population is equal to mean years lived and to 

mean years remaining: μc = μr = μλ  and, therefore = 2μc = 2μr = 2μλ. Thus, if we multiply μc 

by 2, then equation (11) can be restated as  

(12) 2μc =  2(½(e0  +( σ 2/ e0))) = e0  +( σ 2/e0) 

Because 2μc  =  mean years lived (μλ ) plus mean years remaining (μr ) and because 2μc = 

e0  +( σ 2/e0),  we can see that the sum of mean years lived and mean years remaining is equal 

to the sum of life expectancy at birth and the ratio of variance in age at death to life 

expectancy at birth: μλ + μr      = e0  +( σ 2/ e0).  Further, where σ 2   > 0, then it follows that μλ 

+ μr > e0 and where σ 2   = 0, then μλ + μr     = e0 .  

Further, since we also know that life expectancy at birth is equivalent to mean age at 

death, we also can state equation (12) as: 

(13) 2μc   = μd   + ( σ 2/μd)      

where  

     μd   = mean age at death and μc   and σ 2 are defined as before. 

Because 2μc   = μλ + μr      we can re-express (13) as: 

(14)  μλ + μr      = μd   + ( σ 2/μd)  

where  

     all of the terms are as previously defined. 

Once we have Tc and μc, both of which are easily obtained when c(α) is determined, we 

can determine life expectancy at birth by dividing total years in the stationary population by 

the product of k (remember k = l0) and the mean age of the population. Because of the 

equalities shown earlier, e0 also can be determined when either r(α) or λ(α) is found. And, of 

course, once e0 is obtained, b and d can be determined, as can T0. 

Thus, the sum of mean years lived and mean years remaining is equal to mean age at 

death plus the ratio of the variance in age at death to mean age at death. Further, where σ 2   

> 0, then it follows that μλ + μr > μd   and where σ 2   = 0, then μλ + μr      = μd .   

Equation 12 provides a shortcut method for calculating the variance in e0 (and its 

equivalent, mean age at death):   
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(15)    σ 2 = [e0*(μλ + μr  )] –   e0
2 

In verbal terms, equation [15] states that variance in age at death I s found by 

subtracting e0
2   from the product, [e0*(μλ + μr  )], which makes intuitive sense because the 

latter is always larger than the former where σ 2 > 0. 

This approach to calculating  σ 2 is simple to implement (for other ways to calculate   

σ 2   see, e.g.,  Hakkert 1987, Hill 1993, and Wrycza 2014)  because one can simply multiply 

mean age (μc) by 2 and substitute this in the right hand side of equation [15] in place of μλ + 

μr ). This approach also provides a meaningful estimate of σ 2 that among other desirable 

characteristics includes mortality at all ages (see Wryzca 2014 for a discussion of this issue), 

which has a range of applications (see, e.g., Schindler et al. 2012). Appendix Table 1 provides 

a set of such estimates using the information found in Table 1. 

1.2.1 Illustration of Theorem 1 

Using a 1990 USA Life Table (both sexes combined) from the Human Mortality 

Database (2009) as an illustration of a stationary population, we examine λx, ex, and λx+ex by 

age, where ω= 110.5 (which we set as the maximum life span; nobody lives beyond this age). 

Our examination is displayed by Figure 1, which provides a scatterplot of the relationship 

between age (x axis) and λx+ex, the sum of mean years lived and mean years remaining (y 

axis). Life expectancy at birth for this population is 75.40 years.  As shown in Figure 1, when 

age (x) = 0, λx+ex = e0 and when age (x) = 110.5, λx+ex = e0.. The scatterplot shows that 

λx+ex rises non-monotonically from 75.40 years (which is equal to e0 for this population) 

when age = zero, reaches a maximum of 79.82 years at age 78.5, remains at this maximum to 

age 79.5 9 (which is equal to of μλ + μr  for this population ), then monotonically declines 

back to  75.40 (which, again, is equal to e0 for this populaiton), at the maximum possible age, 

110.5. As it increases, the curve is steepest from age 45 to age 79 and the decline from age 79 

is steep all the way to age 110.5. 1 

(FIGURE 1 ABOUT HERE) 

1.2.2 Illustration of Theorem 2 

In order to empirically illustrate the inequality provided by theorem 2 and the relationship 

linking it to variance in age at death (see equations (11) through (14)), we selected a (non-

random) sample of complete USA life tables for years ending in zero and five from the 
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Human Mortality Database (2009), which has an online collection of these life tables 

annually from 1933 to 2013. Table 1 provides these 16 empirical examples of this inequality, 

μλ + μr > e0. 

(TABLE 1 ABOUT HERE) 

      As can be seen in Table 1, the difference between μλ + μr, on the one hand, and e0, on the 

other, declines (although not monotonically) as e0 increases from 1935 to 2010. The mean 

difference over all 16 observations is 5.37 years, with a standard deviation of 1.90. Because 

of theorem 2 we know that the difference will remain positive from the re-expressed form of 

equation (12), namely, μλ + μr      = e0   + (σ 2/e0).  The trend in the sample confirms that the 

relationship is curvilinear as expected from this same re-expressed equation.   

  In verbal terms, the explanation for the empirical illustration of the relationship 

specified in the non-linear equation given by μλ + μr      = e0   + (σ 2/e0), is that the sum of 

mean years lived (μλ) and mean years remaining (μr) is equal to the mean age at death (μd  ) 

plus the ratio of the variance in age at death to mean age at death  (σ 2/μd).  Recalling that 

mean age at death is equal to life expectancy at birth (e0), we can see that if the variance in 

age at death remained relatively constant (or, relatively speaking, did not increase as much as 

life expectancy) from 1935 to 2010 while life expectancy increased, then the difference, μλ + 

μr    - e0 , would decrease during the same period.  To some extent, the trend implied by the 

data in Table 1 likely reflects this because other than the initial effect of the baby boom 

(1946-64), the US population aged between 1935 and 2010 and holding all else constant, 

variance in age at death does not increase as a population ages because deaths become more 

concentrated in the older population, which, in turn, is reflected in life tables constructed 

from such a population (Engelman, Canudas_Romo, and Agree, 2010). 

Another perspective on the relationship shown in equation (12), namely μλ + μr      = e0   + 

(σ 2/e0), is provided by the following equation,  

 (16)    e0     =      0.5[ ((μλ + μr  )
2  - (4σ 2 )).5  + (μλ + μr  )]     

  where           (μλ + μr  ) > 0      

Equation (16) indicates that the relationship between e0    on the one hand, and (μλ + μr ) 

and    σ 2, on the other is described by a hyperbolic paraboloid. Using the data shown in 

Table 1 as an example, Table 2 provides an empirical demonstration of the precision of 

equation (16) in estimating e0   from (μλ + μr ) and  σ 2. 
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(TABLE 2 ABOUT HERE) 

2. DISCUSSION 

Using Carey’s Equality Theorem (Carey et al. 2008, Rao and Carey 2014, Müller et al. 

2004) and a 2005 life table for the United States, Vaupel (2009) estimates that more than 48 

percent are 41 years or older, which implies that nearly half of the life table population will 

be alive in 2050, assuming that the 2005 life table holds to 2009.  Using the same US life 

table and corresponding stationary population, we find that on average the population lived 

40.60 years and will live another 40.60 years on average. If we assume that the 2005 life table 

applied to 2009 as did Vaupel, then on average the members will live to almost 2050, which 

is in agreement with Vaupel’s estimate. Even without such an assumption, it is the case that 

on average the 2005 population lived 40.6 years and will, on average, live an another 40.6 

years, or 81.3 years in total, which is 3.67 years more than their life expectancy at birth of 

77.63  years. While the actual differences may vary, the proof shown earlier for theorem 2 

shows that mean years lived + mean years remaining is greater than life expectancy at birth 

(μλ + μr > e0).          

If we apply this line of reasoning to the actual 2010 US life table, we find that on average 

the 2010 population lived 41.14 years and will, on average, live another 41.14 years, or 82.28 

years in total, which is 3.43 years longer than this population’s life expectancy at birth of 

78.85.  

Vaupel (2009) notes that in regard to work by Müller et al. (2004) and Müller et al. (2007) 

on wildlife population dynamics, Carey’s Equality Theorem could be used to estimate 

population age structure. In regard to this application, we add that if a representative age 

structure is obtained for a stationary population (or one that can be made stationary with 

adjustments suggested by Müller et al. (2004) and Müller et al. (2007), through Vaupel’s 

suggestion or from another method, such as a sample, then its mean age, mean years lived, 

and mean years remaining can be determined as can its life expectancy at birth, its crude 

birth rate and its crude death rate. If a representative age structure is obtained from a 

random sample then interval estimates of these parameters can be constructed for the 

stationary population in question.  

In the form of λx and ex, Carey’s Equality Theorem also manifests itself in the data 
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displayed as Figure 2, although somewhat imperfectly because the data are discrete rather 

than continuous.2 As can be seen in Figure 2, the plotted values of λx by age are a mirror 

image of the plotted values of ex by age, slightly distorted at the tails by the fact the data are 

discrete. The point in Figure 2 at which the two curves cross over one another is 39.75 years, 

which is the mean age of this stationary population (the point on the x axis at which the 

crossover occurs) and also both its mean number of years lived (the point on the y axis at 

which the crossover occurs) and mean number of years remaining (the point on the y axis at 

which the crossover occurs).  That is, 39.75 = μc = μr = μλ. 

                                           (FIGURE 2 ABOUT HERE) 

Theorem 2 generalizes theorem 1 to all ages. As shown in equations (12) through (14) 

and the discussion directly related to these equations, we have an explanation for the 

inequality demonstrated in theorem 2, which is linked to the variance in age at death. For 

example, if variance in age at death is held constant and life expectancy (mean age at death) 

increases then the inequality described by theorem 2 decreases; if variance in age at death 

increases and life expectancy is held constant then the inequality described by theorem 2 

increases.  

The explanation provided for the inequality described by theorem 2 can be extended to 

theorem 1 by looking at the variance in age at death up to and including a given age. For 

example, if we are interested in the inequality found at age x, we will find that if variance in 

age at death up to and including age x is held constant and life expectancy (mean age at 

death) increases, then the inequality described by theorem 1 decreases; if variance in age of 

death up to and including age x increases and life expectancy is held constant then the 

inequality described by theorem 1 increases.  

One implication of these two related theorems is that the mean longevity of all of the 

“living” members of a given stationary population exceeds the mean number of years 

expected at birth.  From a different perspective, Pressat (1972: 480) recognizes this inequality 

by stating that “the mean age of a stationary population is greater than half of the 

expectation of life.” He follows this with an important observation, namely that this 

inequality is due to variation in individual lengths of life. This variation is why the sum of 

mean years lived and mean years remaining exceeds life expectancy at birth (except at age 

zero and at the age representing maximum longevity where the sum is equal to life 
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expectancy at birth, per the proof of theorem 1). This inequality suggests that when a life 

table is used for planning the future, it is worthwhile to keep in mind that life expectancy at 

birth understates average longevity for the “living” members of the life table population 

relative to the non-linear relationship found in  the ratio of variance in age at death to life 

expectancy at birth.3 As such, when this ratio is elevated then it may be preferable to use the 

sum of mean years lived and mean years remaining instead of life expectancy at birth in 

some applications. For a similar reason, this also suggests that at a given age, it may be 

preferable to use the sum of mean years lived to that age and mean years remaining at that 

age instead of simply using life expectancy at the age in question.4 Although it does not 

directly take into account the inequalities we have demonstrated here, work by others such as 

Canudas-Romo and Zarulli (2016) and Canudas-Romo and Engelman (2016) recognizes 

similar implications involving years lived and years remaining.  

3. ENDNOTES 

1. Arni Rao suggested to us that theorem 1 has several implications, one of which is that 

(when 0 < x < ω) the sum of mean years lived at age x (μλ,x) and mean years remaining at 

age x (μr,x) is greater than mean years remaining at age x-1 (μr,x-1).  

2. Villavicencio and Riffe (2016) provide a complete and formal proof of Carey’s equality in a 

discrete-time framework.  

3.  In addition to Pressat (1972), Morales (1989), and Preston (1991), among others, 

Canudas-Romo and Engelman (2016) have examined the sum of mean years lived and 

mean years remaining. However, none of these authors describes the inequalities 

demonstrated here in the forms of theorems 1 and 2.    

4. The ratio, σ 2/e0, is equivalent to the coefficient of variation, as is σ 2/μd. As such, when 

making comparison across stationary populations in regard to variation in e0 or μd, it is 

more appropriate to use these measures, respectively, instead of σ 2. Following the 

observations of Pressat (1972: 480), it is worthwhile to note here that when any subject is 

examined from the perspective of “longevity,” the inequalities we have identified will be 

found where there is variation in individual longevity. Among many others, these subjects 

include, for example, duration of first marriage (Schoen 1975), length of working life 

(Yusuf, Martins, and Swanson  2014: 222-224), length of the second birth interval 

(Swanson 1985, 1986), length of product reliability (Ebeling 2010), age and length of time 
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to product substitution (Martins, Yusuf, and Swanson 2012: 169-189), duration of 

disability (Office of the Chief Actuary 2002), and the longevity of species other than 

humans (Carey and Judge 2000). 
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TABLE 1.  DIFFERENCE BETWEEN THE SUM OF MEAN YEARS LIVED & MEAN YEARS 
REMAINING AND LIFE EXPECTANCY AT BIRTH: SELECTED USA LIFE TABLES FOR BOTH 
SEXES COMBINED, 1935 TO 2010 (N=16) 

YEAR 
e0                    

(1) 

MEAN YRS 
LIVED             

μλ                  
(2) 

MEAN YRS 
REMAINING           

μr                      
(3) 

TOTAL MEAN YRS 
LIVED & 

REMAINING          
μλ + μr                      

(4) 

DIFFERENCE: 
(4) - (1)             

(5) 

1935 60.89 35.47 35.47 70.94 10.05 

1940 63.23 35.86 35.86 71.72 8.49 

1945 65.58 36.55 36.55 73.10 7.52 

1950 68.07 37.12 37.12 74.24 6.17 

1955 69.56 37.62 37.62 75.24 5.68 

1960 69.83 37.66 37.66 75.32 5.49 

1965 70.24 37.81 37.81 75.62 5.38 

1970 70.74 38.00 38.00 76.00 5.26 

1975 72.54 38.67 38.67 77.34 4.80 

1980 73.74 39.09 39.09 78.18 4.44 

1985 74.67 39.39 39.39 78.78 4.11 

1990 75.40 39.75 39.75 79.50 4.10 

1995 75.89 39.90 39.90 79.80 3.91 

2000 76.86 40.20 40.20 80.40 3.54 

2005 77.63 40.60 40.60 81.20 3.57 
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2010 78.85 41.14 41.14 82.28 3.43 

Source of data is discussed in text. Calculations by authors. 
  

 

 

 

TABLE 2.  ESTIMATION Of  e0 :                                                                                                                                             
SELECTED USA LIFE TABLES FOR BOTH SEXES COMBINED, 1935 TO 2010 (N=16) 

YEAR 

REPORTED                  
e0                    

(1) 

           
ESTIMATED        

e0 
1                 

(2) 

MEAN YRS 
LIVED                  

μλ                       
(3) 

MEAN YRS 
REMAINING            

μr                            
(4) 

TOTAL MEAN 
YRS LIVED & 
REMAINING  

μλ + μr                  
(5) 

    VARIANCE IN 
AGE AT DEATH               

σ2                         
(6) 

1935 60.89 60.89 35.47 35.47 70.94 611.94 

1940 63.23 63.23 35.86 35.86 71.72 536.82 

1945 65.58 65.58 36.55 36.55 73.10 493.16 

1950 68.07 68.07 37.12 37.12 74.24 419.99 

1955 69.56 69.56 37.62 37.62 75.24 395.1 

1960 69.83 69.83 37.66 37.66 75.32 383.37 

1965 70.24 70.24 37.81 37.81 75.62 377.89 

1970 70.74 70.74 38.00 38.00 76.00 372.09 

1975 72.54 72.54 38.67 38.67 77.34 348.19 

1980 73.74 73.74 39.09 39.09 78.18 327.41 

1985 74.67 74.67 39.39 39.39 78.78 306.89 

1990 75.40 75.40 39.75 39.75 79.50 309.14 

1995 75.89 75.89 39.90 39.90 79.80 296.73 

2000 76.86 76.86 40.20 40.20 80.40 272.08 

2005 77.63 77.63 40.60 40.60 81.20 277.14 
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2010 78.85 78.85 41.14 41.14 82.28 270.46 

1. Where e0 = .5**((μλ + μr  )
2 -  4σ2 )).5 + (μλ + μr  )]     

   and  (μλ + μr  ) > 0. Calculations by authors.      
    

 

 

 

 

 

YEAR

e0                                        

(1)

TOTAL MEAN YRS 

LIVED & 

REMAINING          

μλ + μr                          

(2)

   VARIANCE:         

AGE AT DEATH1               

σ2                             

(3)

  STANDARD 

DEVIATION:        

AGE AT DEATH               

σ                              

(4)

1940 63.23 71.72 536.82 23.17

1945 65.58 73.10 493.16 22.21

1950 68.07 74.24 419.99 20.49

1955 69.56 75.24 395.10 19.88

1960 69.83 75.32 383.37 19.58

1965 70.24 75.62 377.89 19.44

1970 70.74 76.00 372.09 19.29

1975 72.54 77.34 348.19 18.66

1980 73.74 78.18 327.41 18.09

1985 74.67 78.78 306.89 17.52

1990 75.40 79.50 309.14 17.58

1995 75.89 79.80 296.73 17.23

2000 76.86 80.40 272.08 16.49

2005 77.63 81.20 277.14 16.65

2010 78.85 82.28 270.46 16.45

1. Where  σ
2
 =  e0 *(μλ + μr)

 
- e0

2

Calculations by authors.

APPENDIX TABLE 1.  ESTIMATE OF VARIANCE ( σ2 ) IN MEAN YEARS AT DEATH & STANDARD 

DEVIATION  ( σ ) IN MEAN YEARS AT DEATH
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FIGURE 1. MEAN YRS LIVED + MEAN YRS REMAINING BY 
AGE: 1990 US LIFE TABLE (STATIONARY POPULATION). 
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Figure 2. Mean Years Lived (λ) and Mean Years Remaining (e) by 
Age, 1990 USA Life Table (Stationary Population) 
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